7 research outputs found

    The Severity of Human Peri-Implantitis Lesions Correlates with the Level of Submucosal Microbial Dysbiosis

    Get PDF
    AIM To cross-sectionally analyse the submucosal microbiome of peri-implantitis (PI) lesions at different severity levels. MATERIALS AND METHODS Microbial signatures of 45 submucosal plaque samples from untreated PI lesions obtained from 30 non-smoking, systemically healthy subjects were assessed by 16s sequencing. Linear mixed models were used to identify taxa with differential abundance by probing depth, after correction for age, gender, and multiple samples per subject. Network analyses were performed to identify groups of taxa with mutual occurrence or exclusion. Subsequently, the effects of peri-implant probing depth on submucosal microbial dysbiosis were calculated using the microbial dysbiosis index. RESULTS In total, we identified 337 different taxa in the submucosal microbiome of PI. Total abundance of 12 taxa correlated significantly with increasing probing depth; a significant relationship with lower probing depth was found for 16 taxa. Network analysis identified two mutually exclusive complexes associated with shallow pockets and deeper pockets, respectively. Deeper peri-implant pockets were associated with significantly increased dysbiosis. CONCLUSION Increases in peri-implant pocket depth are associated with substantial changes in the submucosal microbiome and increasing levels of dysbiosis

    COVID 19:Seroprevalence and vaccine responses in UK dental care professionals

    Get PDF
    Dental care professionals (DCPs) are thought to be at enhanced risk of occupational exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, robust data to support this from large-scale seroepidemiological studies are lacking. We report a longitudinal seroprevalence analysis of antibodies to SARS-CoV-2 spike glycoprotein, with baseline sampling prior to large-scale practice reopening in July 2020 and follow-up postimplementation of new public health guidance on infection prevention control (IPC) and enhanced personal protective equipment (PPE). In total, 1,507 West Midlands DCPs were recruited into this study in June 2020. Baseline seroprevalence was determined using a combined IgGAM enzyme-linked immunosorbent assay and the cohort followed longitudinally for 6 mo until January/February 2021 through the second wave of the coronavirus disease 2019 pandemic in the United Kingdom and vaccination commencement. Baseline seroprevalence was 16.3%, compared to estimates in the regional population of 6% to 7%. Seropositivity was retained in over 70% of participants at 3- and 6-mo follow-up and conferred a 75% reduced risk of infection. Nonwhite ethnicity and living in areas of greater deprivation were associated with increased baseline seroprevalence. During follow-up, no polymerase chain reaction–proven infections occurred in individuals with a baseline anti–SARS-CoV-2 IgG level greater than 147.6 IU/ml with respect to the World Health Organization international standard 20-136. After vaccination, antibody responses were more rapid and of higher magnitude in those individuals who were seropositive at baseline. Natural infection with SARS-CoV-2 prior to enhanced PPE was significantly higher in DCPs than the regional population. Natural infection leads to a serological response that remains detectable in over 70% of individuals 6 mo after initial sampling and 9 mo from the peak of the first wave of the pandemic. This response is associated with protection from future infection. Even if serological responses wane, a single dose of the Pfizer-BioNTech 162b vaccine is associated with an antibody response indicative of immunological memory
    corecore